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Abstract. We consider site percolation of dimers (“needles”) on simple cubic lattice. The percolation
threshold is estimated as pperc

c ≈ 0.2555± 0.0001. The jamming threshold is estimated as pjamm
c = 0.799±

0.002.
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1 Introduction

Percolation theory deals with forming of connected objects
inside disordered media. One of the possible kinds of per-
colation problems and at the same time more often used
and simplest is site percolation. In general, site percola-
tion is defined on a lattice (graph) in d-dimensional space
where each site (node) can be either occupied with the
probability p or empty with the probability 1 − p. Neigh-
boring occupied sites form a cluster. If a cluster is so large
that it reaches the two opposite edges of the lattice, the
cluster is called percolating (spanning or connecting). The
lowest concentration of occupied sites for which there is a
percolating cluster is called the percolation threshold pc

for a particular lattice [1].
Percolation is a critical phenomenon. It is a purely

geometric phase transition closely connected with usual
second-order phase transition. Percolation theory is very
simple but general, powerful and useful tool. It attracts
attention of researchers (mathematicians, physicists, pro-
grammers, engineers) because of different reasons from
pure theoretical to applied ones. Percolation theory has
been successfully applied to a wide number of problems
in a large variety of fields [1–4]. One of such applications
is phase transition from sol to gel (see e.g. [5,6]). There
are different modifications of percolation problems used
to describe sol-gel phase transition. Usually occupied sites
represent monomers and empty sites are associated with
solvent molecules.

Most of the studies are devoted to the random
(Bernoulli) percolation of particles (sites) with single oc-
cupancy. Nevertheless, the percolation of k-mers has been
intensively studied during last decade. The percolation of
k-mers may be described as a kind of correlated percola-
tion when particles occupy several (k) contiguous lattice
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sites [7]. Recently, different kinds of k-mers percolation
problems on square lattice have been investigated [7–12].

Another realization of the percolation problem is ran-
dom sequential adsorption (RSA) in which objects (point
particles, segments, rectangles, needles, etc.) are put on
randomly chosen sites and the objects do not move. It is
also possible to consider RSA in a continuum [13–15].

In filling process, objects of finite size are randomly
deposited on an initially empty substrate or lattice with
the restriction that they must not overlap with previously
added objects. Due to the blocking of the lattice by the
already randomly adsorbed elements, the limiting or jam-
ming coverage is less than that corresponding to the close
packing. More recently, leading contributions have been
presented in [10–12,16] treating with the relationship be-
tween the jamming coverage and the percolation thresh-
old. In particularly, Vandewalle et al. [10] have found for
the “needle” that the ratio of the two threshold concen-
trations pperc

c and pjam
c is constant regardless of the length

of the needle

pperc
c /pjam

c = 0.62 ± 0.01.

In the present paper we extend the study of dimer percola-
tion and jamming to simple cubic lattice in the framework
of a MC analysis. A study of the finite size effects is pre-
sented. The main aim of the paper is to determine the
percolation threshold.

2 Numerical results: simulation scheme,
estimation of percolation probabilities
and finite-size scaling analysis

The numerical results were obtained using Hoshen–
Kopelman algorithm [17]. We investigated a number of
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Fig. 1. Probability to find percolating cluster. Linear size of
the lattice L = 128. Mixed boundary conditions.

sample lattices with linear size L up to 128 sites. Free and
mixed boundary conditions were utilized. In the case of
mixed boundary condition, periodic boundary conditions
were applied along two directions, other boundaries are
suppose to be open. We were looking for a cluster span-
ning two opposite free edges.

We used long period (>2× 1018) random number gen-
erator of L’Ecuyer [18] to fill a lattice with the dimers.
Sample lattice was swept site by site. We try to fill the
empty sites with the given probability p by randomly ori-
entated dimers. Not all attempts to place a dimer are suc-
cessfully, indeed. When the lattice is filled, we check the
actual part of the filled sites. If this quantity is smaller
than the given probability p, the filling process is started
once again. There is no possibility to fill a lattice with
the necessary probability if p is large enough. We can as-
sociate the highest possible actual part of the filled sites
with jamming threshold pjamm

c .
Estimates for percolation threshold pc have been ob-

tained by means of percolation frequencies. Simulations
give the percolation frequencies P (p), which serve as an
approximation of the percolation probability. Critical per-
colation have been estimated by nonlinear fit functions
defined by

P (p) = 1 −
(

1 + exp
(

p − pc

a

))−1

. (1)

This function reduces to a step function, if a → 0. Perco-
lation frequency P (p) for particular lattice of linear size
L = 128 and mixed boundary conditions (periodic along
two directions and free along one direction) is shown with
high resolution in Figure 1.

It is well known that critical exponents are univer-
sal [1]. Recently, the detailed investigation of the critical
exponents for percolation of needles in two dimensions was
performed [21]. Standard critical exponents applicability
for percolation of needles is doubles. Our estimations of
the critical exponents (Figs. 2, 3) are in reasonable agree-
ment with known values β = 0.417, γ = 1.795 [19].

γ ±

γ ±

Fig. 2. The mean cluster size S above and below the percola-
tion threshold, as a function of |p − pc|.

∞

β ±

Fig. 3. The strength pP∞ of the infinite cluster as function of
p − pc.

The percolation threshold pc(L) was calculated for
three values of the linear lattice size L = 32, 64, 128.
The percolation threshold pc(∞) for infinite lattice can
be found by fitting these results for different lattice sizes
to the scaling relation

|pc(L) − pc(∞)| ∝ L−1/ν , (2)

where the critical exponent ν has the value 0.875 in
three dimensions [19]. This method leads to an estimate
pc(∞) ≈ 0.2555 (Fig. 4). The results obtained for two dif-
ferent kind of boundary conditions are equal within the
error bar.

Average cluster size as a function of p is shown in Fig-
ure 5. It demonstrates typical behavior near the percola-
tion threshold. If the concentration of the dimers vanishes,
the average cluster size goes to 2, i.e. there are only iso-
lated dimers. If the concentration is much greater than pc

but smaller than jamming, the average cluster size tends
to 2 again. It means that there are the percolating clus-
ter and very rare isolated dimers in the holes inside the
cluster.
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Fig. 4. Determination of the percolation threshold in the ther-
modynamical limit (L → ∞) using the scaling relation (2).

Fig. 5. Average cluster size. Linear size of the lattice L = 128.
Mixed boundary conditions.

We suppose that smooth threshold near the value
p = 0.8 is finite size effect. This threshold has to be ex-
tremely sharp if L → ∞ and corresponds to jamming. Our
estimation gives pjamm

c = 0.799 ± 0.002. It means, that in
contrast with percolation and jamming on square lattice,
the ratio

pperc
c /pjamm

c ≈ 0.32.

Probability P∞ that an occupied site belongs to percolat-
ing cluster goes to 1 very rapid above pc (Fig. 6). It means
that if one tries to add another dimer in the system above
the percolation threshold, the dimer attaches with high
probability to the existing percolating cluster.

3 Discussion

We investigated here new percolation problem. Except
pure theoretical interest, this problem may be useful to
describe sol-to-gel phase transitions. In many cases de-
scription of solute molecules as the point objects is too

Fig. 6. Probability that an occupied site belongs to the per-
colating cluster.

pared-down [20]. Consideration of the molecules as dimers
(“needles”) looks like more realistic in some situations. We
hope that new percolation model will serve for better de-
scription of sol-gel transitions.

One of the possible system for application of the model
is desiccated aqueous solution of albumen. The albumen
molecules have rather complex shape. Conventional site
percolation is too pore model in this case. Dimer can be
used as the next approximation in comparison with point
molecules. When water evaporates, the concentration of
albumin increases and phase transition from sol to gel
arises. Percolation threshold obtained in our work gives
estimation of the critical concentration. Jamming thresh-
olds may be considered as estimation of maximal possible
part of solids in the gel matrix.

The authors are grateful to the Russian Foundation for Basic
Research for funding this work under Grant No. 06-02-16027-a.
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